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RoCap: A Robotic Data Collection Pipeline for the Pose Estimation of
Appearance-Changing Objects

ANONYMOUS AUTHOR(S)

SUBMISSION ID: 8420

Fig. 1. The RoCap pipeline is a robotic system designed to collect datasets for the purpose of pose estimation of appearance-changing
objects, e.g., a deformable plush toy (a). The system consists of a robotic arm and an RGB camera, which allows for data collection (c)
of objects with appearance-changing features (b). Through data augmentation and training on off-the-shelf deep learning models
using the collected data, the system can effectively estimate the pose of the plush toy during manipulation, even as it transitions
through deformation (d).

3D reconstruction is an increasingly popular method to synthesize training data for vision-based object 6D pose estimation. However,

these methods are designed for static objects with diffuse colors and do not work well for objects that change their appearance during

manipulation, such as deformable objects like plush toys, transparent objects like chemical flasks, reflective objects like metal pitcher,

and articulated objects like scissors. To address this limitation, we propose RoCap, a robotic pipeline that emulates human manipulation

of target objects while generating data labeled with ground truth pose information. The user first gives the target object to a robotic

arm, and the system captures many pictures of the object in various 6D configurations. The system trains a model by using captured

images and their ground truth pose information automatically calculated from the joint angles of the robotic arm. We showcase pose

estimation for appearance-changing objects by training simple deep-learning models using the collected data and comparing the results

with a model trained with synthetic data based on 3D reconstruction via quantitative and qualitative evaluation. The findings underscore

the promising capabilities of RoCap.
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1 INTRODUCTION

Accurately predicting the 6D pose (position and orientation) of a physical object is a crucial task for a wide range of

applications in the field of robotics and augmented reality (AR) where robots or human users need to interact with these

objects in the environment. Vision-based pose estimation has gained popularity in the past few years over tracker or

sensor based methods, as it does not require additional hardware, alter the appearance or interfere with the normal use of

the objects and it is cost effective and accessible.

However, estimating the 6D pose of an object from an unconstrained RGB image remains highly challenging due to

the ambiguity nature of the estimation. To solve this problem, researchers have adopted different approaches including

mapping image feature to the 3D model of the object [20] and matching point cloud constructed by depth camera [2]. More

recently, data-driven deep learning methods [38, 47] demonstrated accurate predictions of the 6D pose of pre-defined sets

of object included in carefully crafted datasets [5, 26]. However, it remains unclear how well they work on objects where

carefully labelled data do not exist such as personal objects. To address this issue, some prior work enables end-users to

collect datasets for everyday objects 6D pose estimation [35, 39], introducing synthetic approaches to generate a large

amount synthetic data given the 3D model of the objects [13], or adopts a few-shot learning method by training on 3D

mesh reconstructed from a short clip of video [32].

A limitation of these existing methods is that they mainly focus on objects that are static objects with diffuse colors,

with a lesser focus on objects that change their appearances when being manipulated, including objects with challenging

appearance materials (e.g., transparent and specular objects), deformable objects and articulated objects [45]. a pair of

scissors will dramatically change its physical appearance due to mechanical operation and a model trained on the image

of a closed pair of scissors might produce lower accuracy at recognizing the same pair in an open configuration. Similarly,

a plush toy that changes its shape during manipulation when being affected by gravity will affect the performance of

the pose estimation. While one intuitive approach is to capture data while a human user is manipulating the objects,

annotating such data at scale would be costly and error-prone.

To address the challenge, we propose RoCap, an automated pipeline to collect image data of appearance-changing

object for 6D pose estimation using a robotic arm with minimum human intervention. We deploy a robot arm to mimic

human’s hand to manipulate the objects while capturing the image data as shown in Figure 1. The 6D poses of the object

of each image can be obtained with robotic forward kinematics as each joint of the robotic arm is precisely controlled.

Specifically, RoCap performs the data capturing process for eight different appearance-changing objects with deformable,

transparent, reflective and articulated properties (Figure 3).

We also implemented a simple pose estimation pipeline to quantitatively and qualitatively evaluate the pose estimation

performance of the model trained on our collected data comparing against a few-shot learning pose estimation approach

based on 3D reconstruction (Gen6D [32]). Both the quantitative and qualitative evaluation results demonstrate that existing

work struggles with appearance-changing objects and our approach shows promise in overcoming these limitations with

improved pose estimation accuracy.

In summary, our contributions are two-fold:

• A robotic data collection pipeline with a 6 DoF robotic arm which captures and annotates 6D pose data for

objects that change their appearance during manipulation, addressing limitations in existing data collection

methods.

2
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Fig. 2. 3D reconstructed results for a transparent flask.

• Quantitative and qualitative evaluations to demonstrate the feasibility of the pipeline via improved accuracy of

appearance-changing objects pose estimation by comparing with an advanced pose estimation method in the field

of computer vision.

2 RELATEDWORK

2.1 Object pose estimation

Object pose estimation plays a crucial role in various HCI applications such as augmented reality [2, 19, 20, 44] and

robotics and automation [29]. Over recent decades, researchers have explored diverse approaches to predict an object’s

pose. These includes sensor applications like IMUs, physical marker techniques such as fiducial markers [17, 24, 46], optic

trackers [49] 3D printed embedded QR code [12], computer vision techniques such as color-based tracking [44], feature

point tracking [2] and point cloud alignment [20]. Recent advancement in deep learning has unlocked new challenging

tasks such as predicting the poses of hand-object interaction [6, 18, 31], articulated objects [30] and other problem setups

[1, 8, 33, 48]. Extending this line of research, RoCap focuses on a new problem setup where the objects will change their

appearance during the manipulation. Note that RoCap does not contribute new model architecture or algorithm to improve

the performance in the field of deep learning. Instead, RoCap contributes a novel data collection method and the data

captured by the system can serve as great resources for researchers in the community of computer vision and machine

learning to solve the downstream tracking problems.

2.2 Pose data collection

Data-driven deep learning approaches require data annotated with ground truth labels. Yet, annotating 6D pose data is

challenging, as it is hard to specify 3D bounding box on a 2D image. To address this, researchers have investigated various

methods including three primary strategies: (i) training on synthesized data, (ii) utilizing publicly available datasets and

(iii) designing interactive tools for data collection.
3
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Fig. 3. Example objects for each category that RoCap is focusing on, Viewing-angle dependent: (1) flask, (2) water bottle and, (3)
pitcher, Deformable: (4) flexible frog and (5) stiff anpanman, Articulated: (6) scissors, (7) spray head and (8) clamp.

2.2.1 Synthetic data. One typical way is synthesizing data with the available resources such as the 3D model of the

objects. This approach is commonly used in tasks such as object segmentation [40] and object detection [13]. And a

standard way of using synthetic data in pose estimation is to obtain the 3D model and texture of the objects first and

then render them with different target background [43]. Although synthetic data can be easily scaled, it comes with the

drawback of a disparity between real and virtual data, which might impact model performance. Moreover, as illustrated in

Figure 2, the necessary step of object reconstruction may fail for our target objects, such as the flask.

2.2.2 Real-world data. An intuitive way to bypass the issue of synthesized data is to collect data in the real world. In the

recent years, researchers have adopted two major types of data collection methods. The first is “static object + moving
camera”, where the pose of the object is calculated from the pose of the camera, which can be read from the embedded

sensor. Normally it requires a certain level of human labor as first couple frames need to be manually annotated by

matching the 3D model to the physical object. For example, several publically available datasets have been collected in

this way for benchmarking in the pose estimation domain, such as YCB Video dataset [47], Linemod [3, 21] and T-Less

[22]. Additionally, researchers have also developed interactive data collection pipeline to collect data on custom objects

(e.g., Label Fusion [35]. However, since the objects remain static, it is challenging to capture the appearance-changing

features.

Another approach is “moving objects + static or moving camera”. While effective for capturing appearance-changing

objects, this approach poses challenging for labeling ground truth. For instance, ARnnotate, used in augmented reality [39],

requires users to hold and move the object along a recorded path, leading to potential errors, especially with objects like

articulated items or deformed plush toys. RoCap adopts this approach and ensures the labeled ground truth to be precise

by calculating the robotic arm’s forward kinematics while it manipulates the object to capture the appearance-changing

features.
4
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3 APPEARANCE-CHANGING OBJECTS

In this section we define and explain the importance of three categories of appearance-changing objects that we aim to

track using RoCap. We collected and captured eight items from the three categories with RoCap.

3.1 Deformation

Deformation refers to changes in the shape or size of an object due to external forces applied during manipulation (i.e.,

force of the hand and gravity). Objects with naturally deformable features can include soft and malleable objects such as

fabric materials, clothing and plush toys/stuffed animals. During manipulation, the objects are affected by gravity all the

time, leading to the deformation while the user is moving the objects into different orientation. We picked two plush toys

of different stiffness, anpanman (stiffer) (Figure 3(5)) and frog (more flexible)(Figure 3(4)) as examples of the deformable

objects.

3.2 Viewing-angle dependent

The visual appearance of viewing-angle dependent objects includes two main sub-categories of objects, transparent

objects (e.g., glass) and reflective objects (e.g., polished metal). Appearance of transparent objects depends on the

background behind them, which may contain the environment and the user’s hands. Tracking and estimating the pose of

such transparent objects is a known challenge [14] and hand manipulation may make this even harder. Appearance of

reflective objects on the other hand depends on the environment in front and around it. We picked a conical flask and a

plastic bottle(Figure 3(1, 2)) as representations of transparent objects of different level of translucency (Figure 7b). We

also included a reflective pitcher to represent reflective object.

3.3 Articulated

Objects with articulated features refer to objects whose appearance changes through manual manipulation or interaction.

These changes can occur due to the inherent function of the physical objects. For examples, various handheld tools will

change their mechanical forms while being manipulated by human. We selected three manually-changing objects: a

clamp, a pair of scissors and, a head of spray bottle to represent two different types of manual gripping and hand operation

(holding and pinching).

4 ROCAP PIPELINE

In this section, we will introduce the design of the RoCap pipeline, which is easily replicable using any 6-DoF robotic

arm, we document the essential knowledge and technical challenges addressed including (i) camera calibration, (ii) data

collection, (iii) data labeling and (iv) data pre-processing. Figure 4 shows the overview of the RoCap pipeline and we

discuss each step in details as follows.

4.1 Eye-to-hand camera calibration

The first step of RoCap pipeline is to calibrate the camera to the robotic arm (Figure 4a). During data collection, the

robotic arm will hold the target object using a gripper and the camera is standing on the side to capture the images. In this

setup, the pose of the object in the image refers to the homogeneous transformation of the object from its reference frame

to the camera’s reference frame. This is a typical hand-eye calibration problem because as shown in Figure 5. Assuming

the object has the same pose as the end-effector, the goal is to calculate the transformation matrix of the gripper to the
5



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 8420

Fig. 4. Overview of RoCap. RoCap pipeline consists of camera calibration (§4.1), data capturing (§4.2), data labeling (§4.3), data pro-
cessing (§4.4) and data augmentation (§4.4). By training on an existing deep learning framework, RoCap achieves object segmentation,
state classification and pose estimation for appearance-changing objects.

Fig. 5. Illustration of the eye-to-hand camera calibration (a). The robotic arm grip a checkerboard and move to multiple positions and
orientations for an accurate calibration (b).

camera: cTg, which can be calculated from the following equation:

cTg = cTb ·b Tg (1)

In which bTg refers to the transformation from the gripper to the base of the robotic arm which could be calculated by

forward kinematics [10] while cTb refers to the transformation from the base of the robotic arm to the camera frame,

which is unknown.

To calculate cTb, a camera calibration step is required which can be accomplished by using a checkerboard with known

size of the squares, which is illustrated in Figure 5b . By moving the robotic arm to multiple configuration, cTg can be

calculated from the following AX = XB equations:

6
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Fig. 6. Pose coverage in RoCap capturing pipeline.
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Here cTt refers to the transformation from the checkerboard to the camera frame, which can be calculated knowing the

size of the pattern [37]. Then the calibration target cTb can be calculated from Eq. 1.

After the camera is calibrated, the next step is to capture the image data of the objects.

4.2 Data collection

As mentioned in the previous sections, RoCap collect data of the objects that exhibit the appearance-changing features.

More specifically, RoCap collects objects categorized in four types of appearance-changing features: deformable, reflective,

transparent and articulated.

4.2.1 Pose coverage. The goal of the capturing is simple: capture the images of the objects from as many angles as

possible to have a good coverage of all the potential pose. Quaternions possess the advantage of representing each rotation

without introducing any ambiguity. However, directly sampling quaternions proves to be a challenging task. To overcome

this obstacle and achieve comprehensive coverage of poses, we opt for sampling Euler angles with a specific step of

degrees for each yaw, pitch, and roll channel. Once we have obtained the Euler angles, they are converted into quaternions.

These quaternions are then utilized to calculate the arc distance between each orientation. This methodology is employed

due to the inherent redundancies that can arise from sampling Euler angles. By computing the arc distance of quaternions,

we effectively eliminate these redundancies. The threshold for eliminating redundancies is set at 0.35, roughly equivalent

to a 20◦ azimuth angle.

However, due to the hardware limitation of the robotic arm (e.g., the joints may have a limited range of motion), RoCap

cannot cover the whole possible poses sampled in this process. We use the inverse kinematics solver and path planners in
7
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Fig. 7. RoCap captures the appearance-changing feature of deformable objects (a), viewing-angle dependent objects including
transparent objects (b) and reflective objects (c), and objects with articulated features (d). Human operator is needed if the robotic
arm is not able to change the states automatically (d).

ROS and achieve the final sampling of the poses RoCap supports. Figure 6 visualizes the coverage of the poses in RoCap.

Noted that in existing data collection method where the objects are placed on floor, there will be at least half of the poses

not capturable because it is occluded by the contacting ground.

4.2.2 Capturing process. During the capturing, a human user will be required to hand the target object to the robotic arm

and the robotic arm will move along the designed path and the camera capture the RGB images on each sampled point.

For deformable, reflective and transparent objects, there is no further actions from the users as the change of the

appearance happens naturally when the object is oriented to different direction while being manipulated by the robotic

arm 7abc. For articulated objects, actions need to be taken in order to change the mechanical states of the objects. The

manually-changing action can be achieved either by human or the robotic arm automatically depending on the capability

of the robotic arm to change the appearance. As is shown in Figure 1b, the size of the clamp is small enough to be grasped

by the gripper. And the clamp is expected to have multiple states such as closed, open, and mid-open states. Without the

help of human, the gripper could be able to change the states of the clamp by applying different forces on the parallel

grippers. However, for the pair shown in Figure 7d, the robotic gripper is not able to automatically change the states

because the handle is too wide for the parallel gripper when it is in open state. This is a typical robotic manipulability

problem as mentioned in [29]. For the case that a robotic arm cannot establish firm gripping on the object, a human

operator will be required to manually change the opening angle of the scissors in the interval between the capturing of

different states.

8
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Fig. 8. Data processing of data collected in by RoCap. RoCap generates mask for each image (d) by prompting SAM with bounding
box (b) and points (c).

4.3 Data labeling

The transformation from the base frame of the robotic arm to the target object is logged for each captured image in a

4×4 homogeneous transformation matrix. Then the transformation from camera frame to the object could be calculated

using Equation 1. The rotation and the translation serve as the 6D pose label for the object in each image as shown in

Figure 4c left.

4.4 Data processing and augmentation

After capturing the data with the ground truth labels of objects using RoCap, crucial processing step must be performed to

facilitate subsequent pose estimation training. A typical object pose estimation task comprises two subtasks: (i) segmenting

the object from the scene, and (ii) predicting the orientation of the segmented object. Therefore, the processing steps

involves generating object masks for each label and augmenting the data to adapt to various environment in application.

4.4.1 Generating masks. RoCap leverages the recent emergence of Segment-Anything Model (SAM) [25] which is

capable of producing high quality segmentations given points or bounding boxes as prompts. For each image captured by

RoCap, the subsequent procedures must be executed:

Bounding box. As the camera is calibrated to the robotic arm’s coordinate frame, we generate the initial bounding

box of the object by assuming the robotic arm is holding a 15x15x15 cm cube. We then project the cube’s coordinates

onto the camera’s 2D plane to obtain the bounding box (Figure 8b). Generally, this method yields satisfactory masks

for objects that are distinct and easily identifiable in the image. However, complications arise when objects are partially

obscured by the robotic arm, difficult to distinguish (e.g., a flask whose appearance is influenced by the background),

or even entirely invisible. To address these challenges, an additional filtering process is introduced. This process either

segments the semi-occluded objects or discards the invisible data.

Filtering. To improve the quality of the masked objects, we leverages the interaction with SAM by providing additional

prompts (points) to specify the objects and background (Figure 8c). Specifically, we incorporated two additional steps:

(i) we provide additional prompts for the SAM to highlight the object’s location and (ii) we wrap the gripper in green tape

to reduce its potential interference with segmentation performance.

• Providing additional prompts for the SAM to highlight the object’s location. Given that the gripper consis-

tently holds the objects, we can infer that the center of the 15x15x15 cm cube corresponds to the object.Thus, we

add the projected pixel coordinate of this center as a point prompt for the SAM, indicating the object’s location.
9
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• Removing green background. Given that the gripper can partially obscure the object, it might predominantly

appear within the bounding box. This could lead the SAM to mistakenly segment the gripper as the target object.

To counteract this, we detect the green regions in the image, which are presumed to represent the gripper. We

then calculate the geometric center of these regions and use its coordinates to provide the SAM with a prompt,

pointing out the undesired areas.

4.4.2 Data augmentation. We augment each masked image of the object with random exposure, contrast, saturation, etc.

via Albumentations [4] to achieve better generalizability.

5 EVALUATION

To demonstrate the feasibility of our data collection pipeline, we conducted both quantitative and qualitative evaluation

of the model trained on our data to compare with a few-shot learning pose estimation approach Gen6D [32]. Gen6D

has shown competitive performance on any custom object by using a single video as input for 3D reconstruction (via

COLMAP [41]) and performed feature matching based on the image and resulting pointcloud.

We evaluated the model in two settings, controlled setting where the ground truth can be reliably obtained for

quantitative evaluation, and application setting, where the user manipulates the object during pose estimation for

qualitative evaluation, as the ground truth pose cannot be obtained easily.

5.1 Implementation of pose estimation pipeline

Before we delve into the result of quantitative evaluation, We will discuss the pose estimation pipeline first. As mentioned

earlier, the pose estimation pipeline should consists of one model for segmenting the target object and another for

predicting the orientation based on the segmented output. For objects with manually-modifiable states (e.g., scissors), an

additional state classifier is employed.

For the segmentation task, we leveraged a recent advancement based on SAM: HQTrack [50]. It is a zero-shot approach

and requires no training while being able to consistently produce high-quality segmentation of target objects in videos.

For the orientation estimation, the model is a VGG16 model, pretrained on ImageNet [11], followed by a fully

connected layer outputting the quaternion and the 2D pixel location of the object. The loss function is a combined loss of

the Geodesic Loss on the quaternion prediction and the MSE Loss of the displacement prediction. We train the model on

the augmented data for 120 epochs, using the Adam optimizer with a learning rate of 0.0001.

For the state classification, the model is a MobileNet V3 [23], pretrained on ImageNet [11], followed by a fully

connected layer, and the output dimension is equivalent to the number of the states of the object. We train the model on

the augmented data for 120 epochs, using the Adam optimizer with a learning rate of 0.0001.

5.2 Quantitative evaluation

For quantitative evaluation, we modified the environment by changing the camera angle and updating the background

(Figure 9). Using a newly designed trajectory for the robotic arm, we sampled 1041 data entries. The accuracy threshold

for pose estimation remained consistent with our training data parameters: set at 0.35 or an azimuth angle of 20◦.

To clarify, our evaluation only focused on the accuracy of the orientation prediction, since RoCap rely on prior to

determine the position of the object. For Gen6D, we could not modify its training pipeline to incorporate HQTrack to

enhance its object detection. Instead, we adhered to the guidelines provided for pose estimation on custom objects as

10
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Fig. 9. Quantitative evaluation setup. The green bounding box represents the ground truth and the read bounding box represents the
predicted pose.

outlined in Gen6D’s guidelines1. Specifically, we performed 3D reconstruction of the object using COLMAP [41] and

followed the preprocessing procedure in the guideline.

anpanman frog pitcher flask bottle scissors clamp spray
RoCap 91.9 61.9 73.7 87.1(66.9) 71.9 83.4 42.0 87.6
Gen6D [32] 19.6 12.9 12.7 16.2 16.9 38.3 19.4 28.4

*The number in parentheses indicates flask accuracy in a different background (Figure 9).

Table 1. Quantitative evaluation result. The numbers indicate the average precision at 20◦ azimuth error.

For objects with multiple manual states, test data is gathered for each state, and the model is evaluated accordingly. The

results represent the mean accuracy across all states. Specifically, the flask was tested against two different backgrounds:

its original setting (a black background) and an alternate setting with a typical orange-colored desk surface. Table 1 shows

the accuracy comparison between our approach and Gen6D.

We note that the accuracy is much lower in our testing result as compared to the result Gen6D demonstrated in their

paper. This could be due to several factors:

• 3D reconstruction failures (e.g., Figure 2).

• Data collection with objects in static positions, leading to challenges when the object’s unseen side becomes

visible during manipulation (e.g., a plush toy might be placed face-up on a table during data collection).

• Gen6D’s documented issue with size-changing objects in frames (as the object moves closer and further away

from the camera), as mentioned in their GitHub issues2.

1https://github.com/liuyuan-pal/Gen6D/blob/main/custom_object.md
2https://github.com/liuyuan-pal/Gen6D/issues/29
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Fig. 10. Qualitative evaluation of the eight objects.

The results indicate that a simple pose estimator trained with data from RoCap can deliver relative working pose

estimation performance. However, the quantitative findings also reveal some limitations. For example, the accuracy of

clamp is relatively low compared to other objects due to ambiguity caused by its symmetry. Additionally, objects whose

appearances are environment-dependent demonstrate inconsistent performance under varying backgrounds. More details

are discussed in the limitation in Sec. 6.1.

5.3 Qualitative evaluation

To test the performance in the application setting, due to the difficulty in collecting ground truth, we conducted a qualitative

evaluation on videos of humans manipulating the objects. Figure 10 shows the qualitative comparison between model

trained on RoCap data and Gen6D. For example, RoCap recorded both closed and open states during data collection for

the pair of scissors. This allowed it to provide viable pose estimation for the open state (Gen6D which struggled with the

unobserved state). Please refer to the supplementary materials for the video.

6 DISCUSSION

6.1 Limitations

The quantitative and qualitative evaluation has demonstrated the feasibility and potential of our data collection method.

However, the result also shows certain limitations. Below, we will discuss the limitations from the perspectives of data

capturing, model performance and other constraints.

Data capturing. While RoCap addresses the data capturing of appearance-changing objects, it requires the objects

have distinct appearances in different defined poses. One typically example that is challenging for RoCap is cloth, which

is highly deformable. Its extreme flexibility results in a loss of the pose information when being manipulated by the
12
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Fig. 11. Failure case for a highly deformable cloth.

robotic arm. As illustrated in Figure 11, the piece of cloth is nearly identical in two different poses manipulated by the

robotic arm.

On the other hand, as currently we target objects that people can easily change their appearances with hands, leading to

the target object size ranging from 0.5x~1.5x of a palm size. Additionally, our robotic arm’s mechanical gripper, with a

maximum gripping width of 80mm, further constrains the size of objects it can handle. However, this limitation can be

resolved when a system applies our method to a larger scale robotic arm (e.g., in a mass manufacturing setting).

Model performance. Indicated in the evaluation results, the pose estimation pipeline does not handle symmetric

object well. While this has been an open challenge in object pose estimation [45], recent work have proposed different

network architecture to address this issue [42, 47]. While addressing symmetry is beyond the purview of this paper, future

enhancements could incorporate a sophisticated pose estimator or gather supplementary data like depth via depth cameras.

Furthermore, variations in the environment from the capturing stage may also affect the model performance, especially

for viewing-angle dependent objects. While it is feasible to maintain an environment similar to the capturing setup (e.g.,

using a black background when operating a transparent flask), future improvements could include varying environmental

factors such as different lighting conditions [9, 36]. Additionally, future work could introduce other augmentation method

such as [51] to adapt to various environment.

Other constraints. Currently the need of a robotic arm may require a lab setting. However, the pipeline can also be

applied to scenarios such as (i) product manufacturers collect data and train a model for their product, and include it as

part of their solution package and (ii) home users asks their robot to train a model for their own object when robots are

more accessible in the future, and later the user uses the model to estimation the pose in specific applications.

6.2 Handling Occlusion

Occlusion happens in different scenarios, including the objects being manipulated by hands during interaction, or the

objects being held by the robotic arm during data capturing. While the hand occlusion does have an impact on the model

performance trained on RoCap data, our pipeline is less impacted compared to Gen6D as shown in the qualitative results.

This is due to the fact that during the capture phase, the robotic arm may partially obscure the object throughout the

capturing process, which simulates hand occlusion in the training data.

To further address the occlusion problem, one possible approach is to introduce a hand-like robotic hand during the

data capturing process. For example, anthropomorphic robotic hands, such as those presented in [15], can closely mimic
13
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human hand movements and provide more realistic interaction scenarios for data collection. By using a robotic hand,

it is possible to better account for occlusions that occur during human-object interactions and develop models that can

better predict user intent in such cases. Additionally, to address occlusion caused by the robotic arm during data capturing,

multiple cameras could be employed to ensure the complete visibility of the objects being captured.

6.3 Automatic Changing of Mechanical States

As mentioned in the paper, certain articulated objects necessitate human intervention to change their states, as they cannot

be manipulated by the parallel gripper of the robotic arm [29]. Examples of such objects include those that require a large

range of motion or those that demand bi-manual operation. Recent research in HCI has proposed different methods of

attaching mechanisms to the physical object to automatically actuate the motion without human intervention [27–29],

which can be potentially leveraged by future data collection system using robotic arms to automatically collect a large

amount of data. By automating the data collection process, it is possible to scale up the dataset and sample object states at

smaller intervals. For instance, instead of having discrete states of a clamp, we can sample from a continuous parameter

space evenly while capturing. This would enable the prediction of the continuous parameter such as the angle of a pair of

scissors, thus opening up a wider range of applications. Future direction should include how to design mechanisms that

will not affect the apperance of the objects during capturing while being able to actuate the objects.

6.4 Leveraging Robots for Large-Scale Data Collection

Robots possess the capability to perform repetitive tasks consistently and efficiently. Researchers in computer vision and

HCI have explored various approaches to employing robots for data collection across a diverse range of applications

[7, 16, 34]. This has opened up new opportunities for augmenting tasks that necessitate a substantial amount of repetitive

work, such as data collection for multiple objects, through the integration of robotic systems. By leveraging robotic

systems, researchers can not only streamline the data collection process but also minimize human error and fatigue. This

can lead to the acquisition of more accurate and reliable datasets, which are critical for the development and evaluation of

advanced algorithms and models.

In addition to automating repetitive tasks, robotic systems can be equipped with various sensors and end effectors to

collect multimodal data, such as visual, tactile, and auditory information. This can significantly enrich the datasets and

provide researchers with a more comprehensive understanding of the objects and environments being studied. As robotics

technology continues to advance, we can expect even more sophisticated and versatile robotic systems to be employed in

the data collection process. This will ultimately lead to more robust, accurate, and diverse datasets, which will contribute

to the improvement of various computer vision and HCI applications.

7 CONCLUSION

In this paper, we present RoCap, a robotic pipeline for data collection of appearance-changing objects. This system

addresses the challenge of pose estimation for objects with deformable properties (e.g., plush toys), viewing-angle

dependent properties including transparent materials (e.g., glass flasks) and reflective materials (e.g., pitcher) or objects to

be actuated with multiple mechanical states (e.g., clamps or spray bottle heads). By employing a robotic arm to hold these

objects and capture image data, which can be utilized by anyone possessing a 6 DoF robotic arm, we can train a simple

deep learning model to perform pose estimation on the objects. We conducted both quantitative and qualitative evaluation

of our approach comparing to a few-shot learning framework, which was trained on 3D mesh reconstructed from a video.

The results demonstrated the feasibility and potential of RoCap.
14
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