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Mobiot: Augmenting everyday objects into moving IoT devices using 3D
printed attachments generated by demonstration

ANONYMOUS AUTHOR(S)

Fig. 1. Mobiot is an end-to-end pipeline that helps home users easily automate routine tasks by mobile smart objects. In the automated
home, user can add actuation mechanisms to a bottle to (a) fetch itself, maneuver to (b) fill in water from the tap, then (c-d) travel to
water plants at different location, including (e) adjusting the height to reach one on the coffee table. In a kitchen, a user can build
smart cooking aids with objects collectively operating with various motions, fetching a bowl delivering water, spice cans sprinkling
salt and peppers, and a dish to serve ready-to-eat foods, as well as moving a trash bin next to a counter closer to where food scraps
are.

Recent advancements in personal fabrication made the story of novices automate routine tasks with mobilized everyday objects not
too far away from today. However, the overall process remains challenging- from capturing design requirements and motion planning
to authoring them to creating 3D models of mechanical parts to programming electronics, as it demands expertise.

We introduce Mobiot, an end-to-end pipeline to help non-experts capture the design and motion requirements of legacy objects
by demonstration. It then automatically generates 3D printable attachments, programs to operate assembled modules with a list of
off-the-shelf electronics and assembly tutorials. The authoring feature further assists users to fine-tune as well as to reuse existing
motion libraries and 3D printed mechanisms to adapt other real-world objects with different motions. We validate Mobiot through
application examples with 8 everyday objects with various motions applied, and through technical evaluation to measure the accuracy
of motion reconstruction.
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1 INTRODUCTION

The ascendancy of Industry 4.0 is propelling the utilization of automation in our everyday life, from industries to office
spaces to households. The merge of the cyber-physical system and IoT connectivity is bringing the smart home [23] from
incubator to actuality. Yet, the lion’s share of the everyday objects does not comply with the provisions of automation,
as many legacy entities are either inert or passive in nature. While home-users can easily achieve setting automatic
turning on/off of a device (e.g., lights and thermostats) upon environmental sensing using commercial solutions (e.g.,
Alexa switch), actuation and mobility of an object has been under the unexplored area. As found in robotic vacuums that
freely travel on the floor [20], assistive kitchen robots [8] and many more, the home with mobile agents that are capable
to roam in larger space is the next key for automated home. The addition of mobility to everyday objects can ease and
automate various daily routine tasks, such as self-organizing workspace, helping in food preparation, ambuling items to
different places, etc. Moreover, mobilized agents can facilitate elderly care and aid accessibility based applications, such
as indoor assistive navigation, serving medicines, foods, drinks, etc. However, such motions are not always localized
and executed in between two fixed points, as found in most off-the-shelf IoT devices (e.g. SwitchBot1) or works such as
Robiot [31]. Everyday objects can achieve fairly complicated maneuvering tasks by a combination of translation (2D
roaming on a horizon) in a small/large space, rotation, and lifting motions. Hence, in the context of this work, the word
‘mobile’ or ‘mobility’ refers to the ‘composition’ of these motions in series, applied to various target objects.

Yet, there remain three key challenges for novices to actualize this near-future:

• Most legacy objects are passive in nature, and existing IoT solutions do not support adding motion.
• Capturing design requirements are challenging for novices, such as type of motions and paths, shape of target
objects, needed electronics, and transferring and decomposing those information into components for mechanism
generation, 3D models for fabrication, assembling of electronics and programming. And,

• Authoring, re-purposing or re-using the existing mechanisms to obtain desired actions and adapt to different
use-case scenarios.

In reality, it is not possible to replace all the legacy objects, while commercial robotic solution is either un-affordable
or need advanced knowledge to be able to program for various actions. Although prior works tackled solutions for
novices to turn passive legacy objects to be actuatable using attachment mechanisms [30, 31, 45], the range of motions
of these active objects has been fairly limited, while personalizing other robotic solutions to freely travel a wider space
with desired motion planning requires expert knowledge in robot programming (eg., [22, 35]) or too expensive (eg.,
[19]) to barely afford one, which is not enough to automate multiple everyday objects at home.

Recent advances in personal-fabrication along with Maker’s movements [37] have promised a story of non-experts
to develop their everyday automated systems (e.g., [26]), paving the way toward co-design and fabrication of highly
custom products using desktop printers at home, as witnessed in DIY headphones by Print+2 and co-manufactured
mechanical devices3 and more. Users buy some pre-built components then 3D-print the rest to make the whole product
fit individual needs and tastes. Users also can print different mechanisms and attachments for legacy objects to stretch
their range of usage[31]. Yet, it still presents a barrier to end-users as it demands expertise from capturing real-world
requirements to modeling to final fabrication.

We present Mobiot, an end-to-end pipeline to mobilize everyday objects by demonstration, using 3D printed
attachments. By demonstrating a desired motion with a commercial smartphone as a tool for both designing and action
1https://www.switch-bot.com/
2www.print.plus
3https://edelkrone.com/collections/ortak
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authoring, Mobiot automatically captures mobility requirements and decompose it to create 3D printable mechanisms
and a list of electronics, and produces step-by-step instructions for assembly, as well as program to operate modules
to replicate user-specified motions. The user takes a photo of a target object, then either puts the device on it and
performs the motion demonstration by mobilizing it or keeps it on hand to mimic the required motion. The captured
data using IMU sensors and the input image then serve to extract three critical piece of information at a single shot: (i)
geometry requirements, (ii) mechanisms to obtain the desired mobility, and (iii) motion planning information. Based
on this, the system automatically generates 3D models that fit the target real-world object and reflects mechanism
parameters, displays a set of circuitry needed & driving options, and produce codes to operate mobilization using
assembled mechanisms and circuitry. Following the instructions provided by the system, the user can print and assemble
all the components and load the program to finally transform a legacy object into a smart automotive object.

Mobiot contributes,

• An enabling system with an end-to-end pipeline for home users, to mobilize passive everyday objects at low
investment.

• From simple real-world demonstrations by the user, our system automatically captures design requirements at
one-shot and generates the mechanical components to be 3D printed, list of electronics and program to robotize
everyday objects to reflect the demonstration.

• The end-user can also easily author the motions of the fabricated mechanisms for fine-tuning and reuse or
re-purpose, not demanding expertise about programming and motion planning.

2 RELATEDWORK

2.1 Reality-based Augmentation of the Physical World by Fabrication

Several prior works have begun to tackle the challenge of end-users to augment everyday objects’ functionality using
fabrication upon reality based design constraints. The practice of deriving information from the real-world scenario
and synapsing the extracted data to augment physical entities has been traversed by exploiting different tools such
as augmented reality, virtual reality, 3D scanners, etc. RealitySketch transforms a drawn sketch into a overlayed
visualization that can interact with the physical world [53]. DART augments a storyboard into the working experience
[34] . RoMA [43] presents an AR-based platform to design and 3D-print different artifacts or extend an existing item
on-the-fly, Printy [4] embeds circuitry into a 3D model allowing novice users to fabricate functional internet-connected
objects. Encore enables creation of 3D printed attachment parts on the irregular surfaces of existing objects [11].
AutoConnect lets users connect two real-world objects, such as a cup and chair in the desired arrangement [28], while
Retrofitting existing object to extend its capacity has been explored in several ways with different motivations such as
for accessibility purpose, and more [12, 15, 31, 45]. In a similar vein, Reprise allows users to specify, generate, customize,
and fit adaptations to everyday objects to enhance usability [12]. Patching 3D Objects utilizes a depth camera and a
milling bit to a 3D printer to enable bi-directional on-the-fly design [55].

A handful amount of prior works focus on developing active mechanisms for augmenting physical world, especially
for novice users. Robiot [31] and Romeo [30] closely relates to this context. However, the domain and purpose of the
motions of ours and prior works are non-overlapping. Robiot actuates a part of object with 1-DOF at a time, mostly a
short travel between two fixed points. Moreover, actuation operates on the entities, as specific portion of an object is
moved, pushed, elevated, or triggered by the actuation mechanism. Mobility, on the other hand, adds navigation and
locomotion capability to the whole body. Romeo adds re-configurable capacity into a 3D object, creating ‘robotic arm’

3



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

mechanisms to perform localized actions, while Mobiot offers to combine both non/localized actions. Also, Romeo relies
on digital CAD tool for path planning that may present real-world conflicts, while we capture real-world demonstration
at scale.

2.2 Personalizing Smart Systems for Automated Everyday Lives & Accessibility

Domestication of smart automatic systems can provide with health assistance [22], support independent living [19], or
assistance in domestic works [13]. For example, iRobot Roomba 4 and K¨archer RoboClean 5, for instance, can aid the
daily cleaning task. In later works (e.g., [50, 51]), the impact of customization on the personalization of smart systems
has captivated our attention. Another application of smart objects cuts the area of accessibility. Mobile platforms and
smart objects can serve the prepared foods (Fuzzy-Bot[47]) and drinks, remind about daily routine activities, such as
taking medicines, using bathroom and assist in navigating elderly people (Pearl[44]), fetch diaper/medicine box or
laundry basket, adjusting a display height to the wheelchair position, and many more.

Many of the concept of personal robotics and automated systems relies on off-the-shelf robotic platforms [9, 25, 27],
which often not affordable, hard to program for trivial but varying tasks per individual, such as tailoring roaming plan
to deliver medicine basket from kitchen to room 2. Moreover, platforms are limited by the size of the platform to adapt
a variety of everyday objects, in the scale of the mechanisms and shape to adapt their geometric dissimilarities. Mobiot
focuses on augmenting by 3D printing of custom active mechanisms that adapt fair range of geometry deviations.
High-level input from the user is captured to extract the required low-level information to translate it into desired
mobility mechanisms, and the examples are developed to facilitate the repeated daily life applications, such as, assisting
in cooking, bringing a water bottle, fetching diaper/medicine box or laundry basket, adjusting a display height to the
wheelchair position, etc.

2.3 Motion/Action Planning & Authoring by Demonstration

For an end-user, the main challenge to automate everyday environments comes from capturing motion requirements
and authoring the actions of the fabricated active mechanisms. V. Ra [9], in this context, provides an AR-based platform
for task authoring using a cellphone. Blockly [21] and Vipo [25] present visual authoring methods to ease authoring,
while Learning from Demonstration (LFD) [3] is a technique to capture user demonstration and transfer the extracted
information to execute the learned action. The imitation technique can utilize sensor-on-teacher to record the user’s
action and harvest the data to author a robotic system. Billard et al. [6] explores different prospects of robot programming
via demonstration. Gesture recognition [36] is a considered method of capturing such demonstration. Gesture Coder
[33] allows users to record multi-touch gestures to invoke different applications. It is known that hand-held device is an
efficient way to record demonstration and program the actions of a robotic system using accelerometer [39], voice,
handwriting, and gesture [29], camera and other sensors Dillmann [16], Ehrenmann et al. [18]. A later work utilizes a
3D tracker to demonstrate tasks in a virtual environment and actuate a robotic manipulator in real life Aleotti et al. [1].
Similarly, wearable sensors are used to mimic and reauthor the action of a robotic manipulator in 3D space Wang et al.
[58]. In sum, prior works found programming via demonstration accessible for end users, in which smartphone could
be a solution to aid their demonstrations to capture desired motion of active objects. We undertake a similar approach,
use a smartphone to enable easy capturing of desired motion by demonstration then generate key components for
fabrication and programming.

4https://www.irobot.com/roomba
5https://www.kaercher.com/int/home-garden/robocleaner.html
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Object 
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Motion 
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Capture IMU 
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Generating 3D models 
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Determine electronics

Motion data on 
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Fabrication

Mobile everyday 
object

Assembly
with instruction

Fig. 2. Overview of the Mobiot system. A user demonstrates desired motions of an input target object to get ready-to-3D print
mechanisms and controller board components (code and list of electronics) to add mobility to legacy objects

3 MOBIOT: AN END-TO-END TOOLKIT FOR AVERAGE USERS TO TRANSFORM EVERYDAY PASSIVE
OBJECTS INTO MOBILE OBJECTS

We present Mobiot, an end-to-end system for non-expert users to mobilize their passive everyday objects, capture
design requirements simply by demonstrating the motion and fabricate, assemble, and code mechanisms using low-cost
3D printers as in Figure 2. We set three design goals taken from the classic HCI design principles [46]:

• LowThreshold: The system can enable average users to design mechanisms to add mobility, that can be attached
to everyday objects without expertise, at low cost. Mobiot takes the real-world demonstration as an one-shot
input then automatically translate it to the mechanical entities. Leveraging a cellphone both as a design and
authoring tool, automatic creation of list of required electronics with custom assembly instruction let the user
easily convert a legacy object into a smart mobile objects using low cost 3D printers at home.

• Wide wall: The system can support creation of mobility mechanisms that fit a wide range of everyday objects.
Objects with different sizes, shapes, and weight can be captured for mobility requirements description to be
translated into robotic device design, according to the user’s demonstration.

• High ceiling: The user can create fairly complex motion, combining different degrees of freedom and a series
of actions consisting of three discrete motions at various combinations. For example, a self-watering bottle can
travel in 2D plane, lift, rotate, then travel again to different execution points. Also, using a number of robotic
devices together, a user can also automate fairly complex daily task, such as assistive cooking.

3.1 System Overview

Mobiot links the user’s demonstration to the functional 3D-printable mechanisms and program to actuate needed
electronics. As illustrated in Figure 3, a user starts with Designing from Scratch or Reusing the Existing, to provide an
image as input. This image is then used to obtain the name of that object to run a semantic search through repository
to retain 3D geometry of target object. In the second segment of the input phase, the user runs a provided app on
the cellphone to record IMU sensor data to recover movement information of the demonstration. A user can put the
cellphone on the target object while moving it mimicking the large scale movement, or simply move the phone by hand
imitating a desired motion. The initial inputs are uploaded to the system to attain three information used to create 3D
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printable mechanisms and program to run on electronics: (i) geometry requirements, (ii) mechanisms to realize the
desired mobility, and (iii) motion planning information, which will be detailed in the Section 4.1.

User’s demonstration is categorized into three motion classes of translation, rotation, and lift, depending on the
prime movements captured in certain segments. Users can view the required mechanisms, utilize the recognized motion
sequence to compose task or fine-tune if necessary, as will be detailed in Section 4.2. Once everything is complete, the
user gets ready-to-3D print files of mechanism and a program code to operate this mechanism upon motion descriptions.
The system finally shows the required commercial electronics such as motors and purchase link to the user based on
the types of mechanisms and object weight that user can simply place an order, as will be detailed in Section 4.3. The
user then assembles everything to convert the inert object into a smart automated one. We will first introduce various
use-case scenarios to create diverse examples in the following section.

3.2 User Workflow and Design Scenarios

Recent smart home assistants’ motions include carrying spices from shelves (Robot Kitchen), pouring ingredients
(CafeX), serving foods by patrolling (robot waitress), feeding pets (Cat Mate), watering plants (Aquarius), fetching
laundry (Stretch RE1), taking photos by cam adjustment (Temi). These mostly comprise a combination of translation,
rotation, and lift, that we attempted to decompose these requirements to replicate in ‘need-based’ examples. In this
section, we showcase a variety of everyday objects that are turned to be active in motion to automate home, following
our design pipeline.

The below Figure 3 shows the step by step walkthrough of a user. Here we speculate a story of Nancy at home.
Depending on her design scenario for creating new motions or editing the existing to re-purpose, she may go through
different design routes that simplifies the required design steps.

Fig. 3. A step-by-step walkthrough of the design system. (a)-(e) requires user inputs for design to proceed to the next step, and (f)-(i)
generate outputs for a user to assist fabrication and assembly

3.2.1 Scenario 1. Creating a New Mobility Mechanisms to a New Device: Trash bin. Nancy at the kitchen with full hands
of food scraps wants the trash bin comes near the sink while cooking. Yet, she may not want this stay forever in the
kitchen during normal days as it may be stinky. To make the trash bin that travels and returns back to its original
location near the door. Nancy first took a photo of the trash bin using her smartphone running the Mobiot app, then
puts the device on top of the trash bin and dragged in to the kitchen for demonstration. Satisfied with the motion and
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its trajectory from the screen, she proceeds to the next step to download mechanical parts for 3D printing and order
electronics for assembly. She copied the generated program to write to Arduino, and the self-organizing trash bin is
ready for use as shown in Figure 1a.

Taking a photo of 
target object Motion Demonstration Optional Tuning 3D Printing Order Electronics Loading Arduino Code Complete Assembly

a b c d e f g h i

Fig. 4. Walkthrough to create mobility mechanisms for a trash bin and corresponding user actions. Yellow arrows indicate input and
green arrows indicate output.

3.2.2 Scenario 2. Re-target an Existing Motion Mechanisms with Newly Recorded Motion: Laundry Basket. Liking her
self-organizing trash bin a lot, she bought a smart one. Instead, as the scale and shape of the laundry basket is similar
to her trash bin, Nancy would like to reuse the mechanism generated for it because there was no auto-rolling basket
available on market yet. She wants her basket to locate near the bathroom during daytime collecting dirty towels, then
move to the laundry room during the night.

She opened the app but chose an option for “Reuse the existing mechanism” this time, to record new motion by
demonstrating it using her app which is placed on top of basket while moving from door to door. She slightly adjusted
the trajectory by dragging the anchor shown on the Mobiot display, as she needs to offset more the curve near the
corner where floor lamp sits. This time she does not need to print or buy anything, overwrite the program only. Once
loaded, the rolling platform now adapts her laundry basket instead, as depicted in Figure 1b.

Motion Demonstration Optional Tuning Loading Arduino Code Complete Assembly

a c d e h i

Fig. 5. Re-using a the mechanism from trash bin example with new authored motion and new target object for laundry basket, which
minimizes input making the design process is much simpler by skipping several stages

3.2.3 Scenario 3. Appending New Motions to Existing mechanisms: Spice can. Dreaming of a serving robot in the future
of life, Nancy made her spice jars on the table self-serve her guests over Christmast dinner and reposition to the origin.
She went through the same design scenario but by uploading the 3D model of her 3D printed spice jar, placing it on the
smartphone to mimic the rotation then iterate the same process for fabrication, as illustrated in Figure 6.

She then realized that the jar needs to be lifted while peppering into a bowl, thus opened the app to choose the option
for “appending movement” to the existing mechanism. She recorded lifting by demonstrating it, tuned the height to fit
her dinning table. Mobiot generated new 3D parts to add lifting and listed another motor to manipulate it, as well as a
new Arduino program to reflect changes, as shown in Figure 7. Attaching the scissor mechanism below the previous 3D
printed attachment, her salt and pepper jars are ready to welcome guests on the table, as the result shown in Figure 1d.
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Upload 3D model Motion Demonstration Optional Tuning 3D Printing Order Electronics Loading Arduino Code Complete Assembly

a b c d e f g h i

Fig. 6. Creating a tilt motion for a spice can

Motion Demonstration Optional Tuning 3D Printing Order Electronics Loading Arduino Code Complete Assembly

a c d e f g h i

Fig. 7. Appending a new motion (lift motion) to an existing mechanism that is added to a spice can

3.2.4 Scenario 4. Creating a Complex Series ofMotion: Auto-plantingWater Bottle. AsNancy plans for a long international
trip to attend friends’ wedding, she wants to design a self-watering bottle to keep her plant pots live while she is gone.
The water bottle needs to start its weekly journey from near her auto facet to fill the water, move to her balcony and
water a pot by tilting to pour water, move to the next pot for watering another plant. As the height of two pots differ,
the mechanism needs to lift the bottle to reach the different spot. Nancy recorded the series of motion subsequently,
starting from lifting to reach water tap, moving to the balcony, watering the first pot by tilting, relocating to the next pot
and lifting, then tilting to water it. The list of motion segments are captured accordingly, then she designed the pouring
action by combining the lift and rotation together using the Mobiot interface, downloaded all parts that constitute all
three mechanisms and the program to operate these motions subsequently for final assembly of self-watering bottle as
shown in Figure 1e. While she is away, she can use her cellphone to trigger watering.

3.2.5 Scenario 5. Assisting Cooking. During busy days, Nancy gets a handful amount of time for preparing breakfast.
She wants to have her breakfast readied while sitting in front of her laptop or checking emails. In the kitchen space, the
liquid egg is to be poured into a bucket, some salt and spice to be shook into the bucket, prepare the mixture and then
pour it to the pan, and give the bucket an initial wash. The breakfast table has to have different mayonnaise, sauce, &
pepper spilling bottles, a milk carton, a self-organizing coffee cup, and a platform to take her bread or salad bucket and
pour sauce or dressing on it. She recorded motions for each of the items and fed them to Mobiot individually. She then
3D printed and assembled all the parts generated from Mobiot and attached them to the target objects. She designed the
mixing, pouring, and shaking actions using the Mobiot platform and uploaded the generated code to the mechanisms.
Now she just needs taps on the cellphone for the omelet to be prepared, and with different sequences of taps, she
prepares breakfast with different flavors. Using a future version of Mobiot she adds sensing ability to them, and now
from one fingertip, she would be able to enjoy her breakfast ready while focusing on her other busy morning routine.
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4 IMPLEMENTATION

The Mobiot pipeline involves several steps for adding mobility to everyday objects. From taking user input to generating
3D printable mechanisms we require different features and states regarding the object and the motion. The geometry
and motion features are extracted and mapped systematically for generating the mobility mechanisms and programming
the device. A step by step implementation is described as following.

4.1 Capturing Requirements by Demonstration

4.1.1 Geometry Information. To create 3D printable mechanisms that fit the target real-world object, it is crucial to
obtain the required geometry information for appropriate parametric design, which is captured using a camera, . Mobiot
contains a repository of 3D models derived mostly from Shapenet [10]. When user uploads a photo of the target object,
Mobiot passes the image through YoloV4 [7] object detection algorithm. From the detected object class, the system
makes a semantic search in the repository and fetches a 3D model corresponding to the object class. Optionally, a
user can grab a 3D model of the target object from any public repository and provide it as an input directly. As such
open repository has been populated with the 3D models of many real-world objects, this would soon become a better
approach to guarantee accuracy of obtained 3D geometry.

4.1.2 Motion Information Classification. User’s demonstration is captured via cellphone IMU sensor that consists of
accelerometer and gyroscope data using an android application 6. The app is configured to capture the IMU data at a
maximum possible refresh rate that typically varies from 100Hz to 500Hz depending on the sensor type. The required
data types are gyro, accelerometer, linear acceleration, gravity, magnetic field, rotation vector, and timestamp. User can
upload the recorded data, stored in the cellphone, directly to the Mobiot interface. The captured motion data acts as
initial input for the mobility requirements.

The next step is to classify motion types, so we can segment motion trajectories upon the type of motions. Currently,
the system classifies the three most common motion types- translation, rotation, and lifting motion, by searching the
axis where the most salient movement occurs, which is detailed as following,

Translation. The translation motion is a 2D movement over a horizontal surface. The 2D position of the cellphone
can be obtained from the recorded IMU sensor data using dead-reckoning, double integration or using the state-of-art
machine learning approach. We estimate the 2D trajectory using RONIN [24], a machine learning based approach. From
the trajectory information, we calculate the total amount of distance traversed. Comparing this value with a threshold,
the system determines the requirement of a 2D horizontal motion.

Lifting. RONIN does not provide the 3D trajectory information from non-tango devices. Hence, estimation of lift of
the cellphone during the demonstration is subject to additional computation. We find the lift via a double integration
approach from the acceleration data along Z-axis. Afterwards, using binary threshold the system detects if a lift motion
was triggered in the demonstration.

Rotation. From the IMU sensor, we can obtain the rotation vector at a given time. The rotation vector is highly
accurate due to the android sensor fusion that combines gyroscope and accelerometer data to compensate for errors
and biases. If roll or pitch, obtained from this rotation vector, exceeds a threshold angle, the system classifies this as a
rotation motion.

6https://github.com/Steppschuh/Sensor-Data-Logger
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Fig. 8. A screenshot of the user interface (a) Fetched 3D model, (b) Detected Motions’ list and Motion tools, (c) Additional information
(e.g. weight), (d) Task design scene for importing and previewing motions, (e) Appending motions and adjusting parameters (f)
Animating or Generating outputs, saving custom actions

4.2 User Interaction and Task Design

After the classification and quantification of the motions, they are represented as different blocks in the interface. At
this point, the user can import different motion blocks to the scene and manually design complex tasks or proceed with
the motion sequence automatically recognized by the system, or have a combination of both of them.

4.2.1 Manual Task Designing. The user can manually design a task from the represented motion blocks. These motion
blocks represent individual motion types found in the user’s demonstrations. Once a block is imported to the scene, the
user can append other motion blocks. For instance, the user can import a translation motion block to the scene. This
presents the user with the anchor points on the trajectory. Afterwards, the user can drag the positions of the anchor
points if needed, or additionally add new anchor points to the trajectory. Other motion blocks, such as lift or rotation,
can be appended to different anchor points, as can be seen in figure 8. User can tune the amount of lift or rotation
appended to each anchor points and can drag-drop to organize the sequence of motions, add pause or delay in between
different actions, and choose to execute them either isolatedly or synchronously. During the isolate execution, one
motion at a time is rendered.

4.2.2 Action Module Designing. In our daily activities, many of everyday tasks consist of modular actions, such as
mixing, pouring, etc. Action module designing involves multiple low level motions to have one action. Using our
interface, the user can arrange different motions in series to obtain a particular action, name it and save to the library.
For instance, the user can record one rotation motion, sequence leftwards and rightwards rotation in series multiple
time to have a mixing action module. It provides the opportunity of different actions to be incorporated to the main task
without re-designing it. Some other examples can be synchronous lift + rotate = pouring, lift then rotate multiple times =

shaking, etc. During the task design, the user can re-utilize these modules, adjust their ranges to obtain the desired
10
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actions with ease. In future these high-level action descriptions can also be brought under a repository to further aid
the task designing.

4.2.3 Automated Motion Sequence. During the the motion classification, the system also determines the point of
execution of different motion types. If the user proceeds with the automatically recognized motion sequence, the system
arranges the blocks on the scene as they appear in the demonstration. However, the recorded motion and recognized
sequence may contain human errors, noises originating from the natural movements of the body, or adjusting upon the
environmental changes. Thus, in a similar manner to the manual task designing, the user can fine tune the parameter if
necessary, add more motions blocks to different points, re-arrange them, etc. The user can also remove any unwanted
motion, recognized by the system. The imported motions by the automated system are by default executed isolatedly.
However, the user can select different blocks to be executed synchronously as well.

4.2.4 Additional Information about Target Object. The scale of 3D printed mechanisms and the electronics specification
might vary upon the weight of the object, as the heavier real-world object will need larger but stronger motor. Mobiot
lets the user to input the approximate weight of the object whether it will be heavier than 200g. The torque for mobilizing
the target is computed based on this weight which will be determined under/over this threshold. Additionally, the
weight plays role while generating different 3D models, such as defining size of motor mountings, number of gears in
the lifting mechanism, thickness of the clamps in the rotation motion, etc.

4.3 Generating Outputs

4.3.1 Generating 3D Models and Required Circuitry of Mechanisms. At this point, the system acquired all sufficient
features to generate the 3D printable mechanisms. The target object may be equipped with one or more mechanisms to
replicate the desired mobility that user recorded.

Translation. Geometry of target 3D object determines the size of the platform to install wheels for 2D travels, and
weight determines the required torque for the driving motors. The torque is given by 𝜏 = 𝑟 ∗ (𝑚/2) ∗ 𝑔 where𝑚 is the
mass of the object, 𝑔 is the gravitational acceleration, and 𝑟 is the radius of the wheel. We match the required torque
against a database, built from the information acquired from the motors’ datasets. Additionally, we choose motors
that have 20% more torque than required to incorporate other items within the mechanisms. We choose between two
models of stepper motors- 28byj48 and NEMA 17 variants to support objects’ weight under 200grams and beyond. After
the motor-type is selected based on the required torque, wheels, and motor clamps are then chosen from pre-built
parametric templates as library that we provide, using OpenSCAD7 scripts. We add a boarder on the chassis edges to
prevent the object from falling off while moving, while the user can choose to use glue if necessary.

Rotation. The rotational mechanism uses servo motors where the required torque for rotating is calculated as
previously described. The mount for the servo motor and the supporting parts are added based on the height of the
object. The clamping point is considered to be the center of gravity of the object, which is estimated from the analysis of
the object’s 3D model. For generating the clamps to hold the object, we use the method of Chen et al. [11] for computing
the circumference of a cross-section of the object. Thickening the boundary and extruding it, we obtain the required
clamp.

Lifting. The lifting mechanism is a modified version of the scissor lift system. Counter gears, driven by a servo
motor, are used for the scissor action and adjustable linkers are used to achieve the desired height. The lifting height is

7https://www.openscad.org
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obtained from the motion demonstration, from where the system determines the required linkers to achieve that height.
The selection between a single-sided or double-sided lifting mechanism is determined based on the object’s weight.

4.3.2 Circuitry and Driving Components: We use Arduino Uno, one the most common controller, for the mechanism
operation. Arduino boards are easy to program and offer a vast range of pre-built libraries. For the driving elements,
we use servo and stepper motors. From different variants of servo motors, three popular models are utilized- MG90,
SG5010, and MG996R by Tower Pro. The required torque determines the selection of the servo motors, controlled from
the Arduino Uno using a PCA9685 12-bit PWM I2C servo driver. It has a total of 16 port for driving up to 16 servo
motors. On the other hand, for 2D mobility, we utilize bipolar stepper motors. The NEMA 17 variants offer a vast range
of torque. Besides, the 12V version of the 28BYJ-48 stepper motor is suitable for small & lightweight operations. For
driving the steppers, the popular & open-source Arduino-CNC shield is utilized, which is stackable to the controller
board. For WiFi connectivity, we use low-cost ESP8266 IoT enabled module.

Not all above components for fabrication and electronics assembly are always required, for example, if only rotation
and lifting mechanisms are captured from user demonstration, the system will choose the components and circuitry
for these motions only. The required components and circuitry along with their store links are saved to be presented
before providing the assembly instructions.

4.3.3 Obtaining Parameters to Program Controller Board. The recorded motion information needs to be converted to
machine commands. All the 3D models are generated by the system based on parametric designs, thus the system
possesses all the required information for translating the motion. First, we determine the motion equation and then
parse the information into machine instructions. The processing of data for each of the motion types is described as
following:

Fig. 9. Processing of Horizontal Motion Data (a) Raw positional data obtained using RONIN [24] (b) Moving average filtering (c)
Finding the anchor points.

Translation. The raw trajectory (Γ𝑟(𝑥,𝑦) ) of the 2D motion contains noises (figure 9 (a)) due to sensor accuracy and
user’s wavy hands. The first step of processing this trajectory is passing the data through a low-pass moving average
filter (figure 9 (b)) as per equation 1 to obtain a smooth trajectory (Γ𝑓(𝑥,𝑦) ).

Γ
𝑓

(𝑥,𝑦) [𝑘] =
1
𝑀

𝑀−1∑
𝑖=0

Γ𝑟(𝑥,𝑦) [𝑘 − 𝑖] (1)

The window size (𝑀) of this moving average filter depends on the length of the trajectory, and for our application, we
consider𝑀 to be 5% of the trajectory data length. The second step of processing the trajectory data is fitting piece-wise

12
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linear segments as they can provide anchor points to allow fine tuning as shown in Figure 9c. We iterate through
the points on the smoothed trajectory data (Γ𝑓(𝑥,𝑦) ) and calculate the distances and tangents from point to point. We
consider a distance threshold and tangential angle threshold for finding the anchor points. If any two consecutive line
segments fall under this criteria, the corresponding points are considered to be anchor points. After determining all the
anchor points, the system calculates the distances and angles between these anchor points. This information is then
utilized to generate the motion commands, how far to travel, when to rotate to switch the proceeding direction.

Fig. 10. Realizing motions from parameters with three parametric design as library (a) Forward motion using the differential drive (b)
Taking a turn using the differential drive (c) Setting the height of the lifting mechanism (d) Rotating an entity to a particular angle, in
our pepper can example.

The Figure 10 illustrates three parametric designs to design motion mechanisms and drive them with assembled
electronics. 2D translation is achieved utilizing a differential drive mechanism (Figure 10a,b). By adjusting the rotation
of the motors, the mechanism can reach desired locations. The number of rotations for a motor, required to traverse a
particular linear distance, depends on the wheel diameter (𝑑𝑤 ) as in Figure 10a. Whereas, for going across an arc, two
parameters are necessary- wheel diameter (𝑑𝑤 ) and distance between the wheels (𝑙𝑤 ) (See Figure 10b). For simplicity,
we neglect the frictional coefficients and wheel slip. The stepper motors are driven based on the number of steps.
Considering these parameters and the steps per revolution of the stepper motor, the number of steps required for
covering a particular linear distance (See Figure 10a) are computed.

Lifting. The initial phase of getting the height of the lift motion is processing the accelerometer data along Z-axis.
For this, we first grab the linear acceleration data along the Z-axis as shown in Figure 11a. This data is computed by
the Android sensor fusion algorithm that removes the gravitational acceleration from the Z-axis acceleration data.
Afterwards, the data is passed through a moving average filter and thresholding (See Figure 11b). Afterwards we
perform a double integration of the filtered data to estimate the amount of lifting height (ℎ𝑙 ) (See Figure 11c). The lifting
mechanism comprises gear stages and linker stages as depicted in Figure 10c above. The total lifting height (ℎ𝑙 ) can
be considered to consist of small step heights (Δℎ). Considering the linker length (𝑙𝑔) and adjusting the servo angle
(𝜃𝑠 = 𝑎𝑟𝑐𝑠𝑖𝑛Δℎ/𝑙𝑔) of the servo, the desired lift is achieved.
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Fig. 11. Estimation of Lifting Height (a) Raw linear acceleration data along Z-axis (b) Filtering and thresholding (c) Estimated lifting
height from double integration.

Rotation. The rotation vector represents the cellphone’s orientation about x, y, and z axes and is expressed in the
form of quaternions. For practical usage, we first convert the quaternions to Euler angles [2] (roll, pitch, and yaw) by:

𝑟𝑜𝑙𝑙

𝑝𝑖𝑡𝑐ℎ

𝑦𝑎𝑤

 =

𝑎𝑟𝑐𝑡𝑎𝑛( 2(𝑤∗𝑥+𝑦∗𝑧)

1−2(𝑥2+𝑦2) )
𝑎𝑟𝑐𝑠𝑖𝑛(2(𝑤 ∗ 𝑦 − 𝑧 ∗ 𝑥)
𝑎𝑟𝑐𝑡𝑎𝑛( 2(𝑤∗𝑧+𝑥∗𝑦)

1−2(𝑦2+𝑧2) )

 (2)

Where, 𝑥,𝑦, 𝑧 are the rotation vector components along corresponding axes, and𝑤 is the scalar component of the
rotation vector. We check the maximum values of roll and pitch to estimate the rotation angle. This angle value can be
directly parsed by the servo motor of the rotation mechanism (figure 10 (d)).

4.3.4 Transferring the Motion Information via Auto-Programming. Having all parameters that will be used to program
driving motors for actuation, the next step is to translate them into the writable Sketch program and transfer to the
board. Arduino IDE is a handy platform to program all the Arduino boards. After all the motion data is translated
into motor values, Mobiot generates a string containing the machine commands. The machine commands consist of
identifier keywords- go (g), turn (t), rotate (r), lift (l), delay (d), etc. Each of the keywords is followed by its corresponding
values. Mobiot patches this command string with a pre-built code template which contains codes for driving the motors
based on the command string. This code can be copied and flashed directly to the Arduino board via the Arduino IDE
or the Arduino online code editor 8.

4.4 Re-authoring Motions and Re-usability of Produced Mechanisms

After adding mobility to an existing object, the system creates an entity consisting of the extracted geometry and motion
information then registers to the system as library. By exploiting this stored information, a fabricated mechanism
can be re-authored and re-targeted. Mobiot presents three methods of re-utilizing an existing mechanism- using the
existing mechanism but with different authored motion, retrofitting other objects to existing mechanism, and adding
new mobility mechanisms with the existing one.

4.4.1 Re-authoring Motions. Mobiot offers the user to edit the motion of an existing mechanism. The user can re-record
the motion and use the Mobiot to convert it to machine commands, allowing a laundry basket which initially travels

8https://create.arduino.cc/editor
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from bathroom to the washing room into a new path that ravels from bedroom in early morning to the kitchen during
breakfast to collect table clothes. Afterward, the new motion can be uploaded to the Arduino board or transferred over
WiFi if an ESP8266 is used.

4.4.2 Retrofitting. Retrofitting lets the user to attach a new object, such as one designed for spice jar to adapt water
bottle, to the existing mechanism by generating necessary 3D printable parts. The process starts with capturing the
geometry information of the target object. Afterwards from the previously stored information the system rations the
geometry of the new object to determine the changes. If the new object is larger or smaller than the previous one, the
system generates new attachments or chassis corresponding to the new geometry. For example, if a previous bottle is
equipped with a rotation mechanism and a new bottle has a larger diameter, the system will generate a new clamp to
be replaced in the mechanism to hold the new one. However, we assume the weight of the new object doesn’t deviate
significantly from the previous one.

4.4.3 Appending New Mechanism. The user can also append new mechanisms with existing one as we demonstrated
in spice can example in Section 3.1. For this, the user can capture a new motion demonstration only. Following, the
system determines the types of motions, and hence, the required 3D models of the mechanisms. The system generates
new motion commands based on the newly recorded motion data. Moreover, the system also manifests if there is any
requirement for additional circuitry. The user then can 3D-print additional parts and assemble them with the existing.

4.5 Software

Mobiot is implemented using Python for back-end using django9 (Python based web framework). JavaScript and custom
CSS styling build the front-end. jQuery10 has been used to handle user responses, and three.js11 helps visualizing the
scene and 3D models. We used OpenSCAD12 for parametric design of template that are automatically reconfigured
upon design parameters that are obtained through user input and analysis from back end.

5 EVALUATION

To evaluate Mobiot’s performance, JK: add the summary about accuracy test, the goal, method, etc.
We use the pre-trained model of ResNset18 provided by RONIN for motion recover from IMU data, and hence, for

the accuracy of estimated trajectory, we refer to RONIN, where the Absolute Trajectory Error (ATE) has been reported
1.62 and Relative Trajectory Error (RTE) has been reported 1.67 for unseen datasets. For the technical evaluation of
Mobiot, we further set up experiments for estimating the accuracy of the translation motion parsed by the mechanism.

Figure 12 shows performed evaluations on different motion types. We use a marker to draw the ground truth of a
trajectory with known distances and angles for motion recording and equip a translation mechanism with a marker
(Figure 12a and b). Afterward, we upload the command data manually on the Arduino board, and let the mechanism parse
the command data. After a total traversal of 200cm and two right-angle turns, we found an approximate deviation of
6mm to 9mm from the end point. The lateral displacement is found negligible. We also load an object on the mechanism
and let it traverse 400cm straight. In this traversal, the deviation of the mechanism from the end-point was found
ranging between 2cm to 8cm. It might manifest the mechanism’s initial placement needs to be adjusted more frequently
for larger motions than smaller ones, although, in most cases larger motion is required by larger objects and the relative
9https://www.djangoproject.com/
10https://jquery.com/
11https://threejs.org/
12https://www.openscad.org/
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Fig. 12. Evaluation of Motion Accuracy (a) Test Setup to Evaluate Translation Motion (b) Ground Truth and Traversed Trajectory for
Translation Motion (c) Estimated Angle vs Actual Angle for Rotation Motion (d) Estimated Height vs Actual Height for Lift Motion.

displacement might not be very significant. Incorporating odometry and wheel encoders could further improve for
more frequent usage that need more accurate movement.

Figure 12c compares the recorded motion by cellphone’s roll or pitch angle in action and the estimated angle by
the system. For this criteria, we record the motion of the cellphone by rotating it to a known angles (45𝑜 , 90𝑜 , 180𝑜 ).
Afterwards, the system estimates the roll and pitch from the recorded motion data. A maximum deviation of 3 degree
has been observed but is negligible in practical usecase scenarios for spice jars for example.

Evaluation of estimation of lifting heights is illustrated in Figure 12d. We lift the cellphone to known heights while
recording the motions. Accelerometer data contains heavy noise. Since we use double integration method to estimate
the vertical displacement from the accelerometer, the noise accumulates and leads to deviations. The relative deviation is
within the range of 3cm, which could highly impact for water bottle that may spill over water, while relatively ignorable
for serving foods that human intervention can compromise. With further improvements in 3D pose estimation from
IMU data, the lifting height can be estimated more accurately. Additionally, training a regression model with the IMU
data to estimate the vertical displacement can be another solution to this.

6 DISCUSSION & FUTUREWORK

In this section, we discuss remaining challenges found from Mobiot with potential future work which can be easily
extended to a broader scope of research about end-user enabling interactive systems.

6.1 Mobiot vs. Multi-agent Robotics

Mobilizing multiple objects brings the concept of multi-agent robotics forward. Many prior works, for example Hermits
[38] in this context, focused on mechanical shell design, borrowing the swarm robot approach. This work utilizes a
locomotive toy- Toio for mobility, and also incorporates passive mechanical shells for its reconfigurable architecture.
However, Hermits allow custom mechanical shells to be actuated by the locomotive device which requires special
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arrangements andmechanisms, such as attachments formagnetic coupling and hollow shells for attaching the locomotive
device. These shells are required to be designed specifically to allow a designated motion translations via different gear
mechanisms. Further, ShapeBots [54] uses a vision-based trajectory planning for a multi-agent system, where each
robot contains a Fiducial marker. An interface allows users to configure their positions and actuators. This allows the
robots to act as physical displays or in-situ assistants, wipe debris off a table, perform tangible gaming, create dynamic
fences, and move physical objects. Such requirements are not abundant to adapt everyday objects’ various geometry,
however, utilizing small mobility drivers used in such works would be a promising future work for us to minimize the
scale of the mechanisms in the future.

In a large scale, RoomShift presents a haptic environment for virtual reality [52]. It deploys Roomba robots with
scissor lift mechanisms to lift and re-locate furniture in order to augment virtual scenes with physical objects. It exposes
a potential way of augmenting daily life objects with mobility to realize automated home providing haptic feedback for
further accessibility. As the type of mechanisms only support objects that can be lifted and the system complexity does
not allow end-users to utilize such a system for daily life activities in various scale, Mobiot could be a complementary
solution for transforming individual objects into mobile agents. We aim at exploring the inclusion of multi-agent
robotics to interconnect different mechanisms from different objects for automatic task completion in future works.

6.2 Automatically recovering 3D model geometry from 2D photo input

In case the semantic search of target object from ShapeNet fails, we preliminarily integrated photogrammetry techniques
to generate the 3D model of the target object. Works such as Pixel2Mesh [57], Pixel2Mesh++ [59], 3D model generation
using GAN [62], etc., provides prospective ways of generating 3D model of an object from 2D images. However, 3D
models generated from such methods may not be precise and contain noises to create a perfectly fit 3D printable
mechanisms. We expect to re-integrating automatic recovery of 3D mesh using this method when there are more
advances and benchmark 3D models available to improve accuracy in retained model soon in the future.

6.3 Limitations of the number of 3D models

Currently, we fetch a 3D model from the 2D image from a pre-built repository, mostly built from the Shapenet [10]
models. Hence, the number of available models in this benchmark adds a limitation. Moreover, object detection and
its classes solely depend on YoloV4 [7]. Enriching the number of models in the repository and adding more classes
to the machine learning can resolve the issues. Alternately, users can download 3D models of the target object from
any repository and feed them to the system. Also, users can use substitute models that are coherent in their geometry
requirements (eg. using a laundry bucket model instead of a trash bin with similar geometry).

6.4 The relative scales and attachment mechanisms

Although the scale of the mechanisms is flexible depending on the target object’s physical dimension, the minimal
dimension is limited by motors and electronics. Hence, for the trash bin or laundry bucket example, the mechanisms
seem coherent, although for spice can or water bottle it seems a bit bulkier and obtrusive. With the tiny commercial
driving actuators such as Toio and advances of new electronics and motors that will be much smaller and more powerful
and become available in the market, we will investigate how to address the scale limitation. Additionally, we currently
do not use shells for electronics, but can be inherited from works such as Retrofab [45] or Desai et. al. [14]. To ensure
the object put firmly on a platform, we utilize the clamps generated as described in section 4.3.1, and the boundary
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across the translation motion chassis in addition to gluing keeps the objects from falling apart. However, for toppled
and non-uniform objects, works such as AutoConnect [28] can be utilized.

6.5 Height accuracy retained from acceleration

For the positioning purpose, we rely on RONIN [24]. In practice, dead reckoning based on step counting [5, 41, 42]
and double integration [32, 40] are popular methods of positioning. In the context of double integration, RIDI [61]
shows promising performance. Step-counting based positioning system does not fit our application. Apart from that
double integration method also suffers from the accumulative error that eventually leads towards a huge deviation in
positioning. Android Tango devices have an inbuilt positioning system. However, such devices are not ubiquitous which
made us settle down to RONIN. However, it only provides the 2D position of the audience with non-tango devices.
As a result, the lifting height cannot be determined precisely with the existing algorithms. As a workaround, we use
the acceleration data and find whether and where the lifting is triggered, and make a rough estimation using double
integration of the accelerometer data. Yet, we let the user adjust the height in the fine-tuning step. In the future, if any
better algorithm comes, then it may be integrated along.

6.6 Limitations in Motion: Types & Authoring

Our system currently incorporates three types of motions. However, actions of everyday objects may require additional
motions, such as twisting, curved lifting, sliding, etc. Also, action triggering in compound motions (eg. translation
and rotation together) is accomplished only using spatial programming. In future work, we will incorporate different
triggering types.

6.7 Translation motion & initial placement

The differential drive mechanism for the translation motion does not incorporate the more complex condition than flat
home floor such as terramechanics,e.g. wheel slippage, frictional co-efficient, etc. To have a firm grip in the wheels,
we currently utilize TPU based tires, generated automatically based on the wheel parameters, or the user can also
rubber bands of specific thickness. The initial position and orientation is a crucial factor for mobilizing an object
to the target destination. Apart from that, anchor points are determined based on binary thresholding, which may
lead to deviation of the traversed trajectory from the authored or actual trajectory. Additionally, changing the initial
orientation of the mechanisms can lead to wrong trajectory. The future addition of a closed-loop system, gyro sensor,
and adaptive thresholding can eradicate such issues for extension of Mobiot in-the-wild. Moreover, the mechanisms
require re-authoring once the origin point is changed (e.g. moving the origin point of a trash bin from living room to
dining space). A library of authored motion can help resolving the issue from where the user can trigger a particular
trajectory. However, as the triggering methods are out of scope of this work, we leave this as a future improvement.

6.8 Custom interactions and sensing

Sensing enables users to add custom interactions to different interfaces. IoT-based sensors provide the opportunity for
remote sensing and action mappings, such as automatic turning on and off lights and fans [49], smart door opening and
closing system [17],etc. Off-the-shelf IoT devices, such as Google Nest13, allow users to control inter-connected home

13https://store.google.com/us/product/nest_audio
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appliances via voice commands. Using LeapMotion14 or Kinect15 devices, users can use gestures for mapping custom
actions. We assume users can easily adapt these commercial sensing and triggering solution, assuming such sensing
and custom action mapping are out of the scope of this work. Currently, we utilize an IoT-based WiFi module (ESP8266)
and a JavaScript based interface for triggering the actions. The inclusion of the WiFi module leaves the floor to the user
for the inclusion of IoT-based sensors integration. Platforms, such as Blynk 16, let novices add IoT control or sensing to
different devices. Unification of Adafruit IO17 and IFTTT18 can allow users to control devices over IoT directly from
Facebook chat or Whatsapp messengers.

Inclusions of other sensors on-board (e.g. IR, Lidar, Sonar for obstacle sensing) can capacitate the outcome, and we
intentionally chose open source Arduino and IoT devices to provide easy integration. Moreover, recent developments in
3D printable sensing system (eg. [48, 56, 60]) unleash the potentiality of embedding such sensors within the mechanisms
in another future works.

6.9 Motion Visualizing and Embedding Floor-Plan

Currently we utilize the three.js platform to animate the composed motions with the target object. As a future work,
we aim at embedding the floor plan of an apartment or target area in our system. This will help the visualization of
the trajectories. Recent inclusion of lidar sensors in cellphones (e.g. Iphone 12 Pro) paves the way of 3D scanning of a
scene and generating the 3D floor plan of an arena, which can be embedded in the system in near future for detailed
visualization. Such integration can also facilitate other accessibility applications, such as guided navigation for elderly
care to navigate to different places (e.g. bathroom, kitchen, etc.).
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